
f\X)'A\o\^ctq 
USADAC TECHNICAL LIBRARY 

5 0712 01017242 6 
TECHNICAL 
L LIBRARY 

AD 

TECHNICAL REPORT ARBRL-TR-02306 

DETERMINATION OF THE THERMAL DECOMPOSITION 

KINETICS OF POLYURETHANE FOAM 

BY GUGGENHEIM'S METHOD 

Leon J. Decker 
J. Richard Ward 

March 1981 

: 

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND 
BALLISTIC  RESEARCH LABORATORY 
ABERDEEN PROVING GROUND, MARYLAND 

Approved for public release; distribution unlimited. 



Destroy this report when it is no longer needed, 
Do not return it to the originator. 

Secondary distribution of this report by originating 
or sponsoring activity is prohibited. 

Additional copies of this report may be obtained 
from the National Technical Information Service, 
U.S. Department of Commerce, SDringfield, Virginia 
22161. 

The findings in this report are not to be construed as 
an official Department of the Army position, unless 
so designated by other authorized documents. 

The !<rft' ■.•■' trade nwnes or manufacturers' namec in thin mport 
ictis njt constitute indoroement of my aormeroial produat. 



UNfl.ASSTFTFn 
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 

REPORT DOCUMENTATION PAGE REAP INSTRUCTIONS 
BEFORE COMPLETING FORM 

1.   REPORT NUMBER 

TECHNICAL REPORT ARBRL-TR-02306 

2. GOVT ACCESSION NO 3.    RECIPIENT'S CATALOG NUMBER 

«.   TITLE (and Subtitle) 

DETERMINATION OF THE THERMAL DECOMPOSITION KINETICS 
OF POLYURETHANE FOAM BY GUGGENHEIM'S METHOD 

5.   TYPE OF REPORT ft PERIOD COVERED 

BRL Technical Report 
6. PERFORMING ORG. REPORT NUMBER 

8. CONTRACT OR GRANT NUMBERf«) 7. AUTHORS 

Leon J. Decker 
J. Richard Ward 
?,    PERFORMING ORGANIZATION NAME AND ADDRESS 
U.S. Army Ballistic Research Laboratory 
ATTN:  DRDAR-BLI 
Aberdeen Proving Ground, MD 21005 

10.   PROGRAM ELEMENT. PROJECT, TASK 
AREA ft WORK UNIT NUMBERS 

1L162618AH80 

JJ. „CONTROLLING OFFICE NAME AND ADDRESS 
U.S. Army Armament Research § Development Command 
U.S. Army Ballistic Research Laboratory 
ATTN:  DRDAR-BL „   , ..n    ~,nnr Aberdeen Proving Ground, MD 21005 

12. REPORT DATE 

MARCH 1981 
13. NUMBER OF PAGES 

50 
W.   MONITORING AGENCY NAME ft ADDRESSf» dllletent from Controlling Otllce) 15.   SECURITY CLASS, (of thlm report) 

UNCLASSIFIED 
IS«.   DECLASSlFICATION/DOWNGRADING 

SCHEDULE 

16.    DISTRIBUTION STATEMENT (ol thin Report) 

Approved for public release; distribution unlimited. 

17.   DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, II dlilerent trem Report) 

18.    SUPPLEMENTARY NOTES 

19.   KEY WORDS (Continue on reverae aide If necessary and Identify by block number) 

Polyurethane Foam 
Kinetics 
Wear-Reducing Additive 
Guggenheim's Method 

20.    ABSTRACT (Continue «a reverie •/*» ft nexeeeary ami Identify by block number)    -j ^1/ 

The kinetics of the thermal degradation of a rigid polyurethane foam - 
used to reduce gun wear was determined to illustrate how Guggenheim's method 
could be applied to polymer decomposition. The polyurethane foam decomposed 
in two distinct steps. The first order activation parameters for each rate 
coefficient are ^ = 2.0xl010s-1EXP(-134kJ/mole/RT) and 

k2 = 1.2xl0
10s"1EXP(-154kJ/mole/RT). 

DO/, FORM AM 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 





TABLE OF CONTENTS 

Page 

LIST OF ILLUSTRATIONS. ,  5 

LIST OF TABLES . . . ', '. . . , ,   T . . , , 7 

I.  INTROPUCTION  9 

II.  EXPERIMENTAL  . f . . . , 10 

III.  RESULTS AND DISCUSSION ................. 12 

IV.  CONCLUSION ......,..,....,,... T .. , 17 

REFERENCES r , f . . 18 

APPENDIX A  f .;.. , 21 

APPENDIX B . . , ,  . , 33 

DISTRIBUTION LIST.  , . ... , 47 





LIST OF ILLUSTRATIONS 

Figure Page 

1. Low-Temperature Rate Coefficient vs. Reciprocal Absolute 
Temperature ,,,,,,,,  15 

2. High-Temperature Rate Coefficient vs, Reciprocal Absolute 
Temperature , , f . , . . , .  16 





LIST QF TABLES 

Table Page 

1. COMPOSITION OF POLYURETHANE FOAM 11 

2. RATE COEFFICIENTS FOR LOW-TEMPERATURE REACTION   13 

3. RATE COEFFICIENTS FOR HIGH TEMPERATURE REACTION    14 





I.  INTRODUCTION 

The thermal decomposition rate of polyurethanes has long been of 
interest to polymer chemists in their endeavor to reduce the flammability 
of these widely used materials. A recent thesis reviews this history.1 

Thermal decomposition of polyurethanes is also of interest in 
interior ballistics.  Polyurethane mitigates barrel wear when a high- 
density polyurethane foam is glued to the inside wall of cartridge 
cases.2>3 More recently propellants with polyurethane binders have 
demonstrated reduced sensitivity to accidental or uncontrolled ignition.4 

Wise has suggested the thermal decomposition of the binder governs the 
decreased vulnerability of the propellant.5 

A common technique to measure the kinetics of the thermal 
decomposition is to monitor mass loss vs time at constant temperature 
("isothermal"), or mass loss v£ temperature at a ponstant heating rate 
("dynamic"). The dynamic technique is experimentally convenient, since 
activation parameters can be determined in a single experiment.  The 
isothermal technique, by contrast, requires rate coefficient determina- 
tions at several temperatures; the time for a reaction to go to completion 
is much longer than in a dynamic run; and the rate coefficient is 
sensitive to the value of mass selected at the end of the reaction. 
For polymers this choice can be arbitrary, since polymers typically 
decompose by consecutive reactions. 

The experimental simplicity of the dynamic method prompted many   , 
investigators to apply this technique to polymer decomposition kinetics. 

2 
M.S. Ramakrishman,  "Pyrotysis and Thermal Degradation of Eigid-Urethane 
Foams," Dept of Chemical Engineering,  University of Utah,  December 1975. 

2 L.A.  Dickinson and D.E. McLennan,   "Improvement of the Firing Accuracy 
and Cost Effectiveness of Guns Through the Use of Urethane Foams, " 
J.  Cellular Plastics,  1968,  p 184. 

W. Joseph,   "Use of Foamed Polyurethane in Decreasing Erosion, " 
Picatinny Arsenal Technical Report No.   2520,  June 1958. 

4 
J.J.  Rocchio and R.W.  Deas,   "Interior Ballistics of Nitramine - Inert 
Binder Formulations Being Evaluated for Low Vulnerability Propellants, " 
15th JANNAF Combustion Meeting Vol I,  CPIA Publication 297, February 
1979. 

S.  Wise,  BRL Report in preparation. 

J.H.  Flynn,   "The Historical Development of Applied Nonisothermal Kinetics", 
Thermal Analysis ed, R.F. Sahmenker and P.D.   Garn Vol 2, p 1111   (1969). 

9 



A number of investigators have questioned the validity of the dynamic 
method,7-12 since rate coefficients determined isothermally did not 
agree with those determined with the dynamic method. MacCallum and Taylor 
go so far as to question the validity of the equations used in the dynamic 
method. 

In this report, the decomposition of a polyurethane is measured 
using Guggenheim's  method to evaluate the first-order rate coefficients. 
Guggenheim's technique seems particularly suited, since most polymers 
decompose by first-order kinetics*^,15 Under an inert atmosphere, but 
the exact mass loss corresponding to the end of the reaction is difficult 
to discern for consecutive reactions. 

II.  EXPERIMENTAL 

Samples of polyurethane foam were cut from a piece of foam taken 
from a 105 mm M392A2 APDS round.2>^ polymer ingredients are given in 
Table 1. 

7 
J.R. MacCallum and J.  Tanner,   "A Comparative Study of Some Methods of 
Assessing Kinetic Parameters from Thermogravimetric Analysis, " Euro 
Polymer J.,   6_,  907  (1970). 

a 
J.R. MacCallum and J.  Tannert   "Derivation of Rate Equations used in 
Thermogravimetry," Nature,  225,  1127  (1970). 

g 
R.A.W.  Hill,   "Rate Equations in Thermogravimetry," Nature,  227,   703 
(1970). 

10 R.M.  Felder and E.P.  Stdhel,   "Nonisothermal Chemical Kinetics," 
Nature,   228,   (1970). 

11 
E.L.  Simmons and W.W.  Wendlandt,   "Nonisothermal Rate Equations," 
Thermochimica Acta,  3,  498  (1972). 

12 
P.D.  Garn,   "Nonisothermal Kinetics," J.  Thermal Analysis,  6_ 237  (1974). 

13 F.  Daniels,  Experimental Physical Chemistry,  6th ed.  New Jork, McGraw- 
Hill Book Co.  Inc.  1962, p 140. 

L.P. Rumao and K.C.  Frisch,   "Thermal Degradation of Polyurethanes 
Based on Xylxylene Dusocyamates," J.  Polymer Science, A-l,  10,  1499 
(1972). 

E.  Dyer and R.J.  Hammond,   "Thermal Degradation of N-Substituted 
Polycarbamates," J.  Polymer Sei: Part A,   2,   1   (1964). 

10 



Part s by Weight 

10.5 

6.5 

36.5 

46.5 

Part s by We 

10.0 

7.5 

3.75 

0.15 

0.25 

0.30 

ight* 

TABLE 1.  COMPOSITION OF POLYURETHANE FOAM 

Resin Prepolymer Ingredients 

polyethylene glycol 200 

polypropylene glycol 1200 

castor oil 

2,4 toluene diisocyanate 

Catalyst Mixture Ingredients 

polypropylene glycol 

glycerine 

polyethylene glycol 

ferric acetylacetonate 

nigrosine black 

dibutyltin dilaurate 

^Remainder of foam is resin. 

Thermogravimetric measurements were made on a DuPont Model 950 
thermogravimetric analyzer in a flowing, helium atmosphere (100 ml/min). 
Procedures for isothermal kinetic runs have been described in an earlier 
report. *•" 

Guggenheim's method may be illustrated with the integrated form 
of the differential equation for a first-order reaction given below: 

-kt 
m. -m=(m-ni)e, (1) 

where m = mass at time, t, 

m = mass at completion of reaction, 

m = initial mass, 
o 

k = first-order rate coefficient, and 

t = time. 

•7 /£ 

J.R.  Ward,  "Kinetics of Talc Dehydroxylation," BRL Memorandum Report 
No.   23933  June 1974.     (AD #784083) 

11 



At time,  t + At,  equation  (1)  becomes 

mftl.n  = m    +  Cm    - m )  e-
k(t+At)   . (2) 

(t+At) <*>      v o        <*> 

Subtracting equation (2) from (1) gives 

\  " m
Ct+At)  =   Ö"o  - m~}  e"ktC1  " e"kAt)   * (3) 

Taking logs of both sides of C3) produces 

ln(mt  - m(t+At))  =  -kt + ln((mo - mj(1  - e"kAt))   . (4) 

A plot of ln(m - mrt+AtO vs. t will give a straight line with slope, -k. 
In the experiments reported here, the readings, R, from the heating curve 
are used to get the rate coefficient. 

III. RESULTS AND DISCUSSION 

The polyurethane foam decomposes in two distinct steps with maximum 
decomposition rates at 558K and 673K.  Rate coefficients were determined 
for each decomposition region by making isothermal TG runs within each 
region. Appendix A lists the data for the low-temperature region 
experiments, while Appendix B lists the data for the high-temperature 
region experiments. In all kinetic runs, the y-axis displacement was 
2.0 mg/division. The rate coefficients were determined directly from 
the y-axis displacements. 

Tables 2 and 3 summarize the rate coefficients determined from plots 
of lnfR... - R,„. ....) vs t, where R is the reading from the TG curve. v t   (t+At)J — ' & 

Figures 1 and 2 illustrate plots of In k vs 1/T. The activation 
energy, Ea, and the pre-exponential, A, were determined from a linear 
least-squares fit of the rate coefficients in Tables 2 and 3 to 

In k = In A - E /RT . (5) 

12 
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The results of these calculations are shown below. The error corresponds 
to the sample standard deviation. 

E  ,M/RT/mole 
cL 

lnA,s" 

kl 134±5 23.7±1 . 

k2 154±2 23.2±0.04 

IV.  CONCLUSION 

The kinetics of the thermal degradation of a rigid polyurethane 
foam used to reduce gun wear was determined to illustrate how Guggenheim's 
method could be applied to polymer decomposition.  The polyurethane 
foam decomposed in two distinct steps. The first-order activation 
parameters for each rate coefficient are k. = 2.0 x 10lOs-lEXP(-134kJ/mole/RT) 
and k9 = 1.2 x 10

10s-1EXPC-154kJ/mole/RT)/respectively. 

17 
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Run ID 3-12/16 
mass, nig 25.83 
T, K 472 
At, min 6ÜÜ 

Rt V+At) t, m 

7.42 5.24 50 

7.1b 5.16 100 

6.92 5.09 150 

6.66 5.02 200 

6.41 4.97 250 

6.21 4.91 300 

6.01 4.86 350 

5.84 4.80 400 

23 



Run ID 1-12/29 
mass, mg 22.80 
T, K 476 
At, min 600 

R 
(t+At) t, min 

7.84 5.89 10 

7.80 5.87 20 

7.75 5.84 35 

7.68 5.81 50 

7.45 5.74 100 

7.25 5.68 150 

7.05 5.61 200 

6.85 5.55 250 

6.67 5.49 300 

6.50 5.44 350 

6.36 5.39 400 

6.22 5.34 450 

6.10 5.30 500 

24 



Run ID 1-12/28 
mass, mg 20.56 
T, K 477 
At, min 600 

R 
(t+At) t, min 

7.73 5.89 10 

7.69 5.88 20 

7.62 5.84 35 

7.56 5.81 50 

7.34 5.74 100 

7.15 5.68 150 

6.97 5.62 200 

6.77 5.58 250 

6.60 5.52 3Q0 

6.44 5.48 350 

6.31 5.43 400 

6.19 5.38 450 

6.08 5.36 50Q 

25 



Run ID 2-12 !/16 
mass, mg 23.29 
T, K 504 
At, min 60 

Rt R(t+At) 

7.41 5.49 

7.19 5.39 

6.98 5.29 

6.77 5.22 

6.57 5.14 

6.39 5.08 

6.23 5.02 

6.07 4.97 

5.93 4.91 

5.80 4.86 

5.68 4.81 

5.59 4.77 

5.49 4.73 

5.39 4.69 

t, min 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

26 



Run ID 1-12/16 
mass, mg 24.54 
T, K 504 
At, min 60 

R 
(t+At) 

t, min 

7.29 5.19 

7.05 5.07 

6.82 4.98 

6.61 4.90 

6.39 4.82 

6.20 4.75 

6.01 4.68 

5.85 4.61 

5.69 4.54 

5.55 4.48 

5.41 4.42 

5.29 4.38 

5.19 4.33 

5 

10 

15 

20 

25 

30 

35 

40 

50 

55 

60 

65 

70 
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Run ID 
mass, mg 
T, K 
At, min 

2-i; 
17." 
533 
7 

2/3 
77 

Rt R(t+At) 

8.00 6.77 

7.85 6.55 

7.65 6.42 

7,42 6.30 

7.23 6.20 

7.05 6.09 

6.88 5.99 

6.71 5.91 

6.55 5.84 

6.42 5.77 

6.30 5.71 

6.20 5.66 

6.09 5.61 

5.99 5.56 

5.91 5.51 

5.84 5.47 

t, min 

1.25 

2.0 

3.0 

4,0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

11.0 

12.0 

13.0 

14.0 

15.0 

16.0 

28 



Run ID 3-12/3 
mass, mg 18.99 
T, K 533 
At, min 7 

R (t+At) 
t,  min 

6.20 7.59 

6.11 7.47 

6.01 7.36 

5.85 7.16 

5.71 6.97 

5.57 6.76 

5.48 6.56 

5.37 6.38 

5.29 6.20 

5.20 6.01 

5.13 5.85 

4.94 5.48 

4.84 5.29 

1.0 

1.5 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

13.0 

15.0 
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Run ID 
mass, mg 
T, K 
At, min 

1-12/3 
25.68 
559 
3 

Rt R(t+At) 

6.39 4.20 

5.28 3.89 

4.61 3.66 

4.20 3.51 

3.89 3.37 

3.66 3.24 

t, min 

2 

3 

4 

5 

6 

7 

30 



Run ID 1-12/2 
mass, mg 23.79 
T, K 560 
At, min 3 

R 
(t+At) t, min 

7.46 5.10 

7,07 4.86 

6.14 4.45 

5.39 4.15 

4.86 3,90 

4.45 3.70 

4.15 3.55 

3.90 3.41 

3.55 3.30 

1.5 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

10.0 

31 





APPENDIX B 

Readings from Isothermal TG Curve 
for High-Temperature Decomposition (1 div = 2 mg) 

33 



Run ID 1-1/14 
mass, mg 21. 20 
T, K 593 
At, min 60 

Rt R(t+At) 

3.61 5.07 

3.50 4.69 

3.39 4.39 

3.29 4.15 

3.20 3.94 

t, min 

10 

20 

30 

40 

50 

34 



Run ID 1-] 1/13 
mass, mg 17, .91 
T, K 593 
At, min 60 

Rt R(t+At) 
t, m 

3.65 4.90 10 

3.54 4.57 20 

3.46 4.31 30 

3.37 4.11 40 

3.30 3.94 50 

35 



Run ID 
mass, mg 
T, K 
At, min 

1-1 
15. 
593 
60 

/12 
08 

Rt R(t+At) 
t, m: 

3. 87 2.78 10 

3. .59 2.70 20 

3. ,38 2.62 30 

3. ,18 2.54 40 

3, .01 2.48 50 
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Run Id 1-1/11 
mass, mg 20.57 
T, K 594 
At, min 60 

R (t+At) t, min 

5.28 3.74 

4.89 3.61 

4.57 3.50 

4.31 3.40 

4.10 3.33 

3.90 3.26 

10 

20 

30 

40 

50 

60 

37 



Run ID 1-11/23 
mass, mg 18. 23 
T, K 617 
At, min 30 

Rt R(t+At) t, mi 

6.54 2.97 1.0 

6.02 2.97 1.2 

5.70 2.96 1.4 

5.53 2.96 1.6 

5.41 2.95 1.8 

5.32 2.95 2.0 

5.18 2.94 2.5 

5.08 2.92 3.0 

4.91 2.90 4.0 

4.77 2.88 5.0 

4.60 2.85 6.0 

4.48 2.83 7.0 

4.35 2.81 8.0 

4.24 2.79 9.0 

4.16 2.78 10.0 

3.72 2.70 15.0 

3.41 2.61 20.0 
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Run ID 1-1 1/24 
mass, mg 20. 29 
T, K 618 
At, min 30 

Rt R(t+At) 
t, mi 

7.20 2.93 1.1 

6.90 2.93 1.2 

6.65 2.92 1.3 

6.45 2.92 1.4 

6.17 2.92 1.6 

5.96 2.91 1.8 

5.83 2.90 2.0 

5.46 2.87 3.0 

5.26 2.84 4.0 

5.05 2.82 5.0 

4.89 2.79 6.0 

4.60 2.74 8.0 

4.36 2.70 10.0 

4.09 2.63 12.5 

3.81 2.60 15.0 

3.49 2.56 20 

3.20 2.49 25 

2.98 2.42 30 

3.82 2.39 35 
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Run ID 1-1/17 
mass, mg 19. 80 
T, K 622 
At, min 30 

Rt R(t+At) t, mi 

4.67 2.68 5.0 

4.34 2.62 7.5 

4.06 2.56 10.0 

3.81 2.50 12.5 

3.60 2.46 15.0 

3.43 2.40 17.5 

3.27 2.36 20.0 

3.13 2.32 22.5 

3.01 2.29 25.0 

2.82 2.22 30.0 
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Run ID 1-1/18 
mass, mg 15. 32 
T, K 624 
At, min 30 

Rt R(t+At) 
t, i 

3.68 2,11 5 

3.18 2.02 10 

2.82 1.95 15 

2.57 1.88 20 

2.37 1.8Q 25 
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Run ID 1-11/26 
mass, mg 17. 50 
T, K 636 
At, min 10 

Rt R(t+At) t, mi 

4.23 2.22 2.0 

3.57 2.09 4.0 

3.07 1.98 6.0. 

2.71 1.90 8.0 

2.43 1.83 10.0 

2.02 1.71 15.0 

1.83 1.65 20.0 

1.71 1.60 25.0 

1.65 1.58 30.0 
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Run ID 2-11/26 
mass, mg 18. .00 
T, K 643 
At, min 10 

Rt R(t+At) 

5.04 2.37 

4.78 2.33 

4.58 2.30 

4.35 2.27 

4.15 2.23 

3.77 2.18 

3.46 2.13 

3.20 2.10 

2.97 2.07 

2.78 2.04 

2.62 2.02 

2.50 2.00 

2.39 1.99 

t, min 

1.2 

1.6 

2.0 

2.5 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

11.0 
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Run ID 
mass, mg 
T, K 
At, min 

3-11/26 
22.76 
670 
5 

Rt t, 

4.12 1.0 

3.72 1.2 

3.37 1.4 

3.02 1.6 

2.70 1.8 

2.41 2.0 

1.39 3.0 

0.86 4.0 

.64 5.0 

min R. 
*(t+At) 

Q.56 

.55 

.54 

.53 

.52 

.51 

.47 

.42 

.37 
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Run ID 
mass, mg 
T, K 
At, min 

4-11/26 
18.31 
670 
5 

Rt R(t+At) 
At, 

4.40 1.52 1.0 

4.09 1.51 1.2 

3.76 1.50 1.4 

3.47 1.49 1.6 

3.21 1.48 1.8 

2.97 1.48 2.0 

2.77 1.47 2.2 

2.59 1.46 2.4 

2.42 1.45 2.6 

2.28 1.45 2,8 

2.16 1.45 3.0 

1.94 1.4? 3.5 

1.77 1.40 4.0 

1.64 1.39 4.5 

1.58 1.38 5.0 
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